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a b s t r a c t

An immiscible liquid–liquid multiphase flow in a cross-junction microchannel was numerically studied
by the lattice Boltzmann method. An improved, immiscible lattice BGK model was proposed by introduc-
ing interfacial tension force based on the continuum surface force (CSF) method. The recoloring step was
replaced by the anti-diffusion scheme in the mixed region to reduce the side-effect and control the thick-
ness of the interface. The present method was tested by the simulations on a static bubble and the sim-
ulations of Taylor deformation. Laplace’s law, spurious velocities, the thickness of interface, the pressure
distribution and the small deformation theory were examined. It proves that our model is more advan-
tageous for the simulation of immiscible fluids over the original immiscible lattice BGK model. The sim-
ulations of droplet formation in a cross-junction microchannel were performed and compared with the
experiments. The numerical results show good agreements with the experimental ones for the evolution
of droplet and the droplet size at various inlet velocities. Besides, a dimensionless analysis was carried
out. The resulting droplet sizes depend on the Capillary number to a great extent under current
conditions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, droplet formation of two immiscible fluids in a micro-
channel has attracted extensive attentions due to its wide range of
applications, such as food, cosmetic and pharmaceutical products
(Anna et al., 2003; Doku et al., 2005). Microdroplets can be pro-
duced in such a multiphase system under certain conditions. The
efficiency for generating microdroplets and properties of the li-
quid–liquid flow in microchannels are mainly influenced by the
viscosity, the interfacial tension, the inlet velocities of two liquids
and so on (Baroud and Willaime, 2004). The various parameters in-
volved mean that optimizing the liquid–liquid multiphase flow in
microreactors requires extensive experimental works. Therefore,
numerical studies on such a system are indispensable to provide
a reasonable and economically designed process.

It is well known that the variety and complexity of multiphase
flows pose major challenges to a modeling approach. Accurate sim-
ulation of multiphase flow problems with a moving interface re-
quires obtaining a sharp interface and recovering interfacial
tension, which is often quite difficult for CFD researchers. Several
techniques were developed in the last 25 years and can be classi-
fied into three main categories according to their physical and
mathematical approaches: capturing (Lagrangian), tracking
ll rights reserved.
(Eulerian) and combined methods. Among the various approaches
of multiphase flow simulation, the volume-of-fluid (VOF) (Hirt and
Nichols, 1981), the level set method (Sussman et al., 1994) and the
front-tracking method (Tryggvason et al., 2001) are known as use-
ful and popular tools. Further new developments on capturing the
interface include the particle-mesh method (Liu et al., 2005), the
CIP method (Yabe et al., 2001) and so on. For the simulation of mul-
tiphase flow in microchannels, although the mentioned CFD pack-
ages can provide a general description of the flow patterns,
simulations by traditional computation fluid dynamics are compu-
tationally expensive, partially due to the interface tracking costs.

In recent years, the lattice Boltzmann method (LBM) has devel-
oped into an alternative and powerful tool for complex fluids
(McNamara and Zanetti, 1988; Higuera and Jiménez, 1989;
Higuera and Succi, 1989; Chen and Doolen, 1998; Benzi et al.,
1992). The fundamental idea of the LBM is to construct simplified
kinetic models that incorporate the essential physics of micro-
scopic processes. Macroscopic hydrodynamic behaviors, such as
interface dynamics, naturally emerge as a result of this kinetics.
The macroscopic dynamics of the fluid is the result of the collective
behavior of microscopic physics. Several LB models for the simula-
tion of multiphase flow have been developed. The first immiscible
LBGK model (ILBGK) was proposed by Gunstensen et al. (1991)
based on the R–K lattice gas model (Rothman and Keller, 1988)
and modified by Grunau et al. (1993). Two kinds of colored parti-
cles (red and blue) are introduced for two-phases. The local flux
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and color field (color gradient) are calculated and the maximum
work of color flux against the color field is chosen to encourage
the preferential grouping of same colors. Perturbation step is ap-
plied to realize the interfacial tension effect. An alternative multi-
phase LB model proposed by Shan and Chen (1993) which is based
on the microscopic interactions between particles, and the latest
version of this model can be found in the articles (Shan, 2006;
Sbragaglia et al., 2007). The third LB model of multiphase flow
was proposed by Swift et al. (1995) using a free-energy approach.
The pressure tensor is consistent with the one derived from the
free-energy function of nonuniform fluid. Although this model
leaves the interface relatively wide, the spurious velocities de-
crease greatly.

All of the above LB models have their positive and negative
properties. The use of one instead of the other is a question of
the taste and of the application of interest. In the present study,
the immiscible LBGK model (ILBGK) (Gunstensen et al., 1991) is
used for two reasons. First, the sharp interface is maintained and
the position of the interface can be known accurately. Second, this
technique allows separating the treatment of interfacial tension ef-
fects from interface tracking, so that the value of the interfacial
tension is easy to be calculated and adjusted. Although both prop-
erties above are advantageous when studying complex interface
motion in confined and/or complex geometries, it should be noted
that the original immiscible LBGK model still has some unphysical
properties, such as spurious velocities and side-effect near the
interface. To overcome these problems mentioned above, an im-
proved immiscible LBGK model was proposed. With our model,
the droplet formation in a cross-junction microchannel was
numerically studied.

2. Numerical method

In this section, the original immiscible lattice BGK model
(Gunstensen model (1991)) is reviewed briefly, and then two other
variations are presented, including the Lishchuk model (2003) and
the Latva-Kokko model (2005). Finally, our improved model is
proposed.

2.1. Existing models

Gunstensen et al. (1991) reported the first immiscible lattice
BGK model for multiphase flow. The two fluids denoted by differ-
ent colors, red and blue, obey the lattice Boltzmann equation as

f k
i ðxþ ei; t þ 1Þ � f k

i ðx; tÞ ¼ Xk
i ðx; tÞ ð1Þ

where, f k
i ðx; tÞ is the particle distribution function in the ith velocity

direction for the kth fluid (red or blue) at position x and time t. ei is
the particle velocity of the ith direction. These particle distribution
functions evolve according to Eq. (1). The collision operator, Xk

i ðx; tÞ,
is split into two parts. The first part denoted by ðXk

i Þ
1 is the same as

the BGK single-phase collision term and can be simplified as

ðXk
i Þ

1 ¼ � 1
sk
½f k

i ðx; tÞ � f kðeqÞ
i ðx; tÞ� ð2Þ

where, f kðeqÞ
i ðx; tÞ is the equilibrium distribution function at position

x and time t, and sk is the single-relaxation time for the kth fluid.
The second part of the collision operator (perturbation step) is given
as

ðXk
i Þ

2 ¼ A j G j cos 2ðhi � hf Þ ð3Þ

where, A is the adjustable interfacial tension parameter, hi is the an-
gle of lattice direction i, and hf is the angle of the local gradient of
the color field G, which is defined as
Gðx; tÞ ¼
X

i

ei½qrðxþ ei; tÞ � qbðxþ ei; tÞ� ð4Þ

where, qr and qb are densities of red and blue fluids, respectively. To
prevent the two fluids from mixing with each other, the so-called
recoloring step is applied. The basic idea of recoloring is to keep
the interface sharp by reallocating f k

i ðx; tÞ in the mixed region at
the collision step, so that colored particles cross the interface as
few as possible. The colored particles are demixed according to
the color field by maximizing the work of the color flux q(x,t) as
follows

qðx; tÞ ¼
X

i

ei½f r
i ðx; tÞ � f b

i ðx; tÞ� ð5Þ

Through this ‘‘recolor” procedure, particles of each color tend to
congregate together. Thus, the two fluids are forced to be immis-
cible.

Based on Gunstensen model, Lishchuk et al. (2003) modified the
algorithm by replacing the perturbation step with a direct force
term at the mixed region. This force term is used to recover the re-
quired pressure difference across the interface. Lishchuk’s ap-
proach is a quite different process comparing with Gunstensen’s
method. It builds up the inner pressure of the droplet through a
net body force acting on the interface. This step causes the interfa-
cial length to decrease slightly and produces the desired interfacial
tension as well. It has already been reported that Lishchuk’s meth-
od provides much better drop isotropy and reduces spurious veloc-
ities significantly (Lishchuk et al., 2003). In addition (Halliday et al.,
2007; Hollis et al., 2007), (i) Lishchuk’s method has a controllable,
directly input interfacial tension, (ii) it is much more stable than
any of its competitors and able to reach much larger interfacial
tensions (iii) in its latest form, with very-efficient, analytic compo-
nent separation it is far simpler than either the Shan–Chen or free-
energy methods, with much lower spurious velocities than the
Shan–Chen method.

For Gunstensen’s method, the recoloring step serves as an arti-
ficial anti-diffusion for separating two-phases by maximizing the
work of the color flux. This kind of anti-diffusion has the adverse
side-effect of disturbing the interface, which makes the interface
profile to be zigzag. This may be caused by the lack of diffusion
at the tangent of the interface. Thus, it is a natural idea to seek help
in the replacement of the recoloring method with a moderate dif-
fusion procedure. Recently, Latva-Kokko and Rothman (2005) re-
ported a new scheme for the recoloring step by introducing an
adjustable parameter b, which controls the strength of phase diffu-
sion across the interface. Although Latva-Kokko’s idea is used to fix
the lattice pinning problem of the original immiscible lattice BGK
model, its improvement can also be used for resolving the side-ef-
fect problem. Furthermore, this improved recoloring step is much
easier to implement than the old one (Gunstensen model).

2.2. The present model

Based on above discussions, we modify the Gunstensen model
by replacing the perturbation step with a direct forcing term at
the mixed region with CSF model (Brackbill et al., 1992) and
change the recoloring step by Latva-Kokko’s anti-diffusion scheme
(2005).

With the same notations, the lattice Boltzmann equation for the
kth component can be written in the same form as Eq. (1), with the
collision term being

Xk
i ðx; tÞ ¼ �

1
sk
½f k

i ðx; tÞ � f kðeqÞ
i ðx; tÞ� ð6Þ

The 9-speed and 19-speed models are chosen in this study for two-
dimensional and three-dimensional simulations, respectively. So
that a suitable equilibrium distribution function takes the form
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f kðeqÞ
i ¼ wiq

k 1þ 3eiaua þ
9
2

eiaeibuaub �
3
2

u2
� �

ð7Þ

with w0 = 4/9, wi = 1/9fori = 1, 2, 3, 4, wi = 1/36 for i = 5, 6, 7, 8 in
two-dimensional simulations and w0 = 1/3, wi = 1/18, fori = 1 . . . 6,
wi = 1/36,fori = 7 . . . 18 in three dimensional simulations.

In Eq. (6), sk is the relaxation time for each kind of fluid. It is
used to decide the value of the kinematic viscosity as

m ¼ 2s� 1
6

ð8Þ

where s is the relaxation time for the color blind fluid and is defined
as s ¼

P
qksk=q. These collision and relaxation rules lead to the fol-

lowing macroscopic mass and momentum equations (Rothman and
Zaleski, 1977) as

otqþr � ðquÞ ¼ 0 ð9Þ

otuþ u � ru ¼ �1
q
rpþ mr2u ð10Þ

The densities qk for different phases, the total density q, momentum
qu and pressure p are obtained from the following equations:

qk ¼
X8

i¼0

f k
i ¼

X8

i¼0

f kðeqÞ
i ð11Þ

q ¼
X

k

qk ð12Þ

qu ¼
X8

i¼0

eifi ¼
X8

i¼0

eif
eq
i ð13Þ

p ¼ 1
3

q ð14Þ

In order to realize the interfacial tension effect, we force a local
pressure gradient across the interface by an additional force term.
A popular model for the interfacial tension force is the continuum
surface force (CSF) model, which was developed by Brackbill et al.
(1992). In the CSF model, the interfacial tension is interpreted as
a continuous, three-dimensional effect across the interface, rather
than as a pressure boundary condition on the interface. It is adopted
in our model due to its easy implementation and high accuracy.
After applying the interfacial tension force, the velocity u which is
used for equilibrium distribution function is replaced by a new var-
iable ueq defined as

queq ¼ quþ sF ð15Þ

where, s is the relaxation time for the color blind fluid, the interfa-
cial tension force F is added to the common velocity u and modeled
as follows:

F ¼ rj
rC
j rC j ð16Þ

where, r is the surface tension coefficient. The color field C(x, t) and
interface curvature j are given as

Cðx; tÞ ¼ qrðx; tÞ � qbðx; tÞ ð17Þ

j ¼ �ðr � n̂Þ ¼ 1
j n j

n
j n j � r
� �

j n j �ðr � nÞ
� �

ð18Þ

where, n̂ðxÞ is the unit normal to the interface, and
n̂ðxÞ ¼ nðxÞ= j nðxÞ j. The normal vector n(x) is defined as

nðxÞ ¼ rCðxÞ ð19Þ

The two parts inside the bracket of Eq. (18) can be calculated as
follows:
ðr �nÞi;j ¼
onx

ox

� �
i;j

þ ony

oy

� �
i;j

¼ 1
2Dx
½nx;iþ1=2;jþ1=2 þ nx;iþ1=2;j�1=2 � nx;i�1=2;jþ1=2 � nx;i�1=2;j�1=2�

ð20Þ

þ 1
2Dy
½ny;iþ1=2;jþ1=2 þ ny;i�1=2;jþ1=2 � ny;iþ1=2;j�1=2 � ny;i�1=2;j�1=2�

ni;j

j ni;j j
� r

� �
j n j¼ nx

j n j

� �
i;j

o j n j
ox

� �
i;j
þ ny

j n j

� �
i;j

o j n j
oy

� �
i;j

ð21Þ

the normal vector ni,j on the grid point and cell centered ni+1/2,j+1/2

are calculated by the following equations:

ni;j ¼
1
4

niþ1=2;jþ1=2 þ niþ1=2;j�1=2 þ ni�1=2;jþ1=2 þ ni�1=2;j�1=2
� �

ð22Þ

niþ1=2;jþ1=2 ¼ x̂ Ciþ1;jþCiþ1;jþ1�Ci;j�Ci;jþ1
2Dx

� 	

þŷ Ci;jþ1þCiþ1;jþ1�Ci;j�Ciþ1;j
2Dy

� 	 ð23Þ

After introducing the surface tension force, the recovered momen-
tum equation becomes

otuþ u � ru ¼ �1
q
rpþ mr2uþ F ð24Þ

The cumulative effect of the surface tension force is to produce an
appropriate local step in pressure across the interface. Since this
method does not conserve momentum locally, neither does the
Shan–Chen method, we test the momentum conservation globally.
For the direct force method, momentum non-conservation, creating
a drift in the centre of mass of a high surface tension drop of radius
20 lattice units amounts to a drift of 1.0e�6 lattice units in 10,000
time steps. It is almost negligible.

The other improvement in our model is the modification of the
recoloring step by implementing Latva-Kokko’s anti-diffusion
scheme. The crucial part of this solution is to allow the red and
the blue fluids to moderately mix at the tangent of the interface
and to keep the color distribution symmetric with respect to the
color gradient. The following redistributions for the red and blue
particles are used after the collision step.

f r
i ¼

qr

qr þ qb
fi þ b

qrqb

ðqr þ qbÞ
2 f eqð0Þ

i cos u ð25Þ

f b
i ¼

qb

qþ qb
fi � b

qrqb

ðqr þ qbÞ
2 f eqð0Þ

i cos u ð26Þ

where, fi and f eqð0Þ
i are the color blind distribution functions and

zero-velocity equilibrium distribution functions going to ith direc-
tion, respectively. u, defined in Eq. (27), is the angle between the
color gradient and the particle velocities ei. b is the parameter relat-
ing to the tendency of the two fluids to separate.

cos uji ¼
G � ei

j Gkei j
ð27Þ

where G is the local gradient of the color field with the same defi-
nition as shown in Eq. (4). Without the last terms in Eqs. (25) and
(26), red and blue particles would be distributed according to their
numbers and there would be no tendency for the separation of the
two fluids. Here, b can take any value between 0 and 1 to control the
diffusion and the width of the interface. When b is larger than 1,
there can be negative populations of particles. However, if the neg-
ative values are kept small, the stability is maintained (Latva-Kokko
and Rothman, 2005). The relation between the thickness of inter-
face and b will be discussed in the next section.
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3. Validation of the code

3.1. The simulations of a static bubble

The usefulness of our new model for easily and accurately sim-
ulating multiphase flow is demonstrated by the case of a static cir-
cular bubble with radius R. A 2D (in the xy-plane) simulations are
performed in a 100 � 100 lattice cell system, and the periodic
boundary conditions are employed.

First, we test Laplace’s law, which is given as

DP ¼ Pin � Pout ¼ r=R ð28Þ

where Pin and Pout are the average pressures inside and outside the
bubble, respectively. Simulations with different initial bubble radii
were performed, and the final radius R and the pressure differences
were recorded. Fig. 1 is the plot of D P = Pin � Pout versus 1/R. Here,
the value of r is set to be 0.001. In Fig. 1, all points representing a
radius from 8 to 20 almost fit a straight line. The pressure difference
1 / R
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Fig. 1. Numerical confirmation of Laplace’s law by the present method.
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Fig. 2. The distribution of velocity vectors at r = 0.001 and R
inside and outside the bubble is indeed proportional to the recipro-
cal of the radius in our simulations. This test shows that our method
can correctly model the interfacial tension effect. In addition, it can
be found that the slope (DP � R = r) is quite close to the given inter-
facial tension r. So, we can easily control the exact value of interfa-
cial tension by present method.

Second, the spurious velocities are examined for both the Gun-
stensen’s model and the present model. Fig. 2 shows velocity vec-
tors at the final stage of bubble evolution for (a) Gunstensen’s
model and (b) the present model. The interfacial tension coefficient
r = 0.001and the initial bubble radius R = 15 are used for both mod-
els. Although there may be some small relative fluctuations as time
evolves, they present the typical velocity field. The magnitude of
the velocities is represented by the length of the velocity vectors,
for which the same scale is used in both models. The non-zero-
velocity fields in pictures (a) and (b) represent the deviation of
the results from the physical problem, especially the velocities
near the interface region. These non-zero velocities are called spu-
rious velocities. It can be found that the spurious velocities are
much more serious in the Gunstensen model (Fig. 2a) than present
model (Fig. 2b). The comparison is also given in Fig. 3 quantita-
tively. The variation of the velocity magnitude jujwith rotational
angle is much smaller in our model.

Third, the pressure distributions are investigated. Fig. 4 shows
the pressure distribution for (a) Gunstensen’s model and (b) pres-
ent model at r = 0.001 and R = 15. The same scale is used for both
models. The anisotropy in our method, characterized by the
pressure distribution, appears to be much smaller than that in
the Gunstensen’s model, as shown in Fig. 4a and b. With the polar
angle changing, the pressure distribution of our model almost
keeps the same value as shown in Fig. 4b, but Gunstensen’s model
(Fig. 4a) shows larger variation. The variation in pressure distribu-
tion may cause the anisotropy of bubble behavior and induce large
spurious velocities. The quantitative comparison of the pressure
distributions is shown in Fig. 5. The anisotropy of the surface
tension characterized by the variation of pressure with rotational
angle appears to be much smaller than that in Gunstensen model.
In addition, the present model obtains a continuous pressure
distribution across the interface, while discontinuous distribution
appears in Gunstensen’s model.

Finally, the thickness of interface and its dependence on the
parameter b (see Eqs. (25) and (26)) are examined for the current
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= 15 for (a) Gunstensen’s model and (b) present model.
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model. The surface tension coefficient r = 0.001 and the initial bub-
ble radius R = 20 are used here. Fig. 4 shows the thickness of inter-
face against b along the horizontal line at the middle of the
computational domain (y = 50). From Fig. 6, we can find that the
thickness of interface decreases significantly with the increase of
b. A very sharp interface can be obtained at large b. Fig. 7 shows
the interface profiles at various values of b. Four typical values of
b (0.5, 1.0, 1.5, 2.0) are used for discussion. When b < 1 (Fig. 7a),
the interface profiles are very smooth but not so sharp. When
b P 1 (Fig. 7b–d), the profiles become much sharper than that at
small value of b. The thickness of interface can be decreased effec-
tively by increasing the value of b. Generally, it is better to control
the interface as sharp as possible, but when the interface becomes
very sharp, minus density distribution (negative population of par-
ticles) will occur near the interface as shown in Fig. 7c and d (b > 1).
Besides, when b > 1, the sharpness can not be improved efficiently
by increasing b as shown in Fig. 6. Also, the minus density distribu-
tion becomes significant at large b. This may lead to some very
unreasonable results, since the density distributions are usually
used for computing the average properties at the interface. Based
on the above discussion, a moderate value b = 1 is used in the fol-
lowing study to get a sharp interface and prevent the minus den-
sity distribution.

3.2. Taylor deformation

As a dynamic problem, the simulations of Taylor deformation
shown in Fig. 8 were performed to investigate the droplet deforma-
tion behavior of the two-phase code. A droplet is placed between
two plates moving in opposite directions to obtain linear shear in
the Stokes regime (small Reynolds number), and droplet deforma-
tion was studied as a function of the shear rate (expressed as the
Capillary number). The definitions of the Reynolds number and
the Capillary number are given as
Fig. 4. The pressure distribution at r = 0.001 and R = 15
Re ¼ _cR2q
g

ð29Þ

Ca ¼ _cRg
r

ð30Þ

where _c ¼ 2U=H is the shear rate (the velocity of the moving wall
divided by the channel height), R is the radius of the droplet, g is vis-
cosity, and r is the interfacial tension coefficient. The densities and
viscosities are the same for both fluids in the present study (density
ratio v = qr/qb = 1.0, and viscosity ratio k = gr/gb = 1.0). Simulations
were run in a system of 100 � 50 lattice cells, and for a droplet with
for (a) Gunstensen’s model and (b) present model.
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a radius of 10 lattice cells. In the steady state, Taylor obtained a the-
oretical result for small deformation D which is defined as

D ¼ L� B
Lþ B

¼ 19kþ 16
16kþ 16

¼ ð35=32ÞCa ð31Þ

Here L and B are the major and minor axis of the ellipse as shown in
Fig. 8

Fig. 9 shows the comparison between our simulations and the
theoretical prediction for D versus Ca. From the figure one can
see that the agreement between our numerical simulations and
the theoretical result is excellent at small Capillary number. This
agreement for small deformation is clear evidence that the numer-
ical method performs well for dynamic problem. In Fig. 9, we also
show the results for the cases with different Reynolds numbers, be-
cause the Reynolds number is also an important parameter to de-
cide the flow pattern. In a small Reynolds number, the results of
our simulations are more close to the theoretical line. In this case,
the flow is almost decided by the Capillary number and agrees well
with the small deformation theory in large extent. However, in
higher Reynolds number, the deformation of the simulation is lar-
ger than the theoretical one for large Capillary number.
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Parameter b is checked in various values by this case. Here we
show the examples for b = 1.0 and b = 0.5 in Fig. 9. It can be found
that the results are not very sensitive to the thickness of the inter-
face (b = 1.0 and b = 0.5). However, small b (increase the thickness
of the interface) will decrease the mobility of the interface and in-
crease the resistance to deformation. The effect may become signif-
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icant for small bubble case or very wide interface. In general, a
sharp interface is desired in the multiphase flow simulations espe-
cially for many bubble system, in which the clear interface is
necessary.
a

b

Fig. 10. Flow field of the droplet deformation at Re = 0.12 an
The comparison between the present model and Gunstensen
model was also performed. Although the difference between two
models in large Reynolds number and large Capillary number is
not significant, the spurious velocities will become comparable
with the main flow velocities for the cases of small Reynolds num-
ber and small Capillary number, and it may give a big error in the
simulations. Fig. 10 shows the comparison of the flow field be-
tween two methods at Re = 0.12 and Ca = 0.2. It can be found that
Gunstensen model give a large error, while our improved method
can still predict the results very well.

Given the successful comparison with the Taylor result in the
small deformation limit, we have performed the simulations at lar-
ger shear rates to investigate the ability of our model to adequately
track the deforming interface to breakup. Fig. 11 shows snapshots
of the evolution of the droplet under shear at Re = 2.4 and Ca = 0.4.
The dimensionless time is defined as t* = 2Ut/H. These pictures
show that there is a considerable stretching and then a breakup oc-
curs at the middle of the long and deformed droplet. From the sim-
ulations, we can find that the present model is expected to be
suitable for describing droplet deformation and breakup.

4. Experiments and simulations of droplet formation

4.1. Model system and experimental setup

A cross-junction microchannel that had three inlet ports and
single outlet was used in this study. This microchannel consisted
of a main channel with a 200 lm width and two lateral channels
d Ca = 0.2 (a) the present model, (b) Gunstensen model.



Fig. 11. Snapshots of the evolution of the droplet under shear at Re = 2.4 and Ca = 0.4 (a) t* = 0.2, (b) t* = 2.0, (c) t* = 4.0, (d) t* = 6.0, (e) t* = 7.5, (f) t* = 8.0.
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Fig. 12. Model system for droplet formation in a cross-junction microchannel.

Fig. 13. Schematic of the system setup; the micro-PIV system consisted of a 10-bit
highspeed CCD camera, a microscope, and syringe pumps.
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with 100 lm widths as shown in Fig. 12. The depth was 100 lm
through the whole channel. Fluid A (water-phase) was introduced
into the main channel and fluid B (oil-phase) was injected into one
of the lateral channels. The other lateral channel was used as the
inlet channel for the water- or oil-phase fluid as the case may be
(oil-phase was used in this study). As the water-phase, water with
3% PVA (viscosity, lA = 1.074 � 10�2 Pa s; density, qA = 1.03 �
103 kg m�3) was used. As the oil-phase, Freol ALPHA 10G (viscosity,
lB = 2.441 � 10�2 Pa s density, qB = 0.93 � 103 kg m�3) was used.
The interfacial tension is r = 0.03 N m�1. The magnitudes of the
average inlet velocities are designated as uA for the water and uB

for the oil. The velocity ratio is defined as a = uA/uB. The channel
was made of polydimethylsiloxane (PDMS) and was bonded to a
glass plate by means of the plasma treatment using the O2 plasma
asher. However, the surface of PDMS structures can not only lose
the hydrophobic characteristics but also can be extremely hydro-
philic after the electrical discharges, e.g. the corona treatment in
air or the plasma treatment. This loss of the hydrophobicity is a
disadvantage or a problem to generate microdroplets. Hillborg
(2001) reported about the loss and recovery of the hydrophobicity
of the PDMS surface after exposure to electrical discharges. Hung
and Lee (2004) suggested the heat treatment as a quick and effi-
cient method for hydrophobicity recovery of PDMS, thus allowing



t=0 ms 

t=121.159 ms 

t=160.528 ms 

t=239.126 ms 

t=277.425 ms 

t=281.569 ms 

t=317.724 ms 

Time steps=0 (0 ms) 

Time steps =12000 (120 ms) 

Time steps =16000 (160 ms) 

Time steps =23000 (230 ms) 

Time steps =25780 (257.8ms) 

Time steps =25980 (259.8ms) 

Time steps =31000 (310ms) 

(i)

(ii)

(iii) 

(iv)

(v)

(vi)

(vii)

a b c

Fig. 14. A series of instantaneous states of droplet formation for (a) experimental results, (b) numerical results on x–y plane and (c) numerical results of 3D profiles, at
uA = 0.00084 and a = 1/3.
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an alternative to toxic chemical assembling (e.g. silanization). The
plasma-treated PDMS surface can recover the hydrophobicity
through heat treatment. Hence, the PDMS channel was placed into
a 120 �C oven for 72 h to recover the hydrophobicity after plasma
bonding with a glass plate.

Fig. 13 shows the schematic illustration of the experimental set-
up for the micro-PIV system for this study. The system consisted of
a 10-bit highspeed CCD camera (1200hs, PCO), a microscope (BX51,
Olympus), and syringe pumps. A 10-bit highspeed CCD camera
with a 1280 � 1024 pixel resolution was used to get time-resolved
velocity fields as a microdroplet was formed. A halogen lamp was
focused and illuminated to a test section from the bottom of the
microchannel. Then, shadows of particles were formed on the im-
age plane, unlike using fluorescent lights emitted from particles.



Fig. 15. The velocity fields obtained from (a) experiment and (b) simulation when droplet detaching, at uA = 0.00084 and a = 1/3.
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Fig. 16. Experimental (i) and simulated (ii) droplets at various velocity ratios for uB = 0.00252.

Table 1
Comparisons of droplet size obtained from experiment and simulation at various
velocity ratios

a Length

L(i) experiments
(lm)

L(ii) simulations
(lm)

Relative error
j LðiiÞ � LðiÞ j =LðiÞ (%)

1/6 275 270 1.82
1/3 300 295 1.67
1/2 310 300 3.33
1/1 410 390 5.00

(L(i) is the length of the droplet for experiment and L(ii) is for simulation.)
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Particles with 1 lm in diameter were seeded into the working
fluids: water-phase and oil-phase fluids. The particles that were
contained in an aqueous solution were dried and mixed with the
oil-phase fluid to seed the particles into the oil-phase fluid. Ultra-
sonic treatment and filtering were performed to disperse particles
and to eliminate lumps of several particles after mixing dried par-
ticles and the oil-phase fluid. To drive the flow, syringe pumps
were used.

4.2. Numerical simulations

Such flows are described by a large number of parameters
including the interfacial tension, the inlet velocity, the viscosity
and variations in the density across the two fluids. Luckily, several
parameters are naturally small. For instance, inertial effects are
small comparing with viscous effects, yielding small Reynolds
number which has a negligible effect on the formation of the drop-
let in microchannel (Tice et al., 2003). Gravitational effects will also
generally be small comparing with interfacial tension, yielding a
small Bond number. In contrast, the Capillary number (Ca) which
describes the relative importance of viscosity and interfacial ten-
sion always dominates such flow system. The Capillary number
is defined as Ca = lU/r where l is the viscosity, U is a typical veloc-
ity, and r is the interfacial tension. In the current study, the com-
parisons between experiment and simulation are performed
based on Capillary number.

Furthermore, several authors have reported the importance of
the interaction between the fluids with the walls. In order to gen-
erate structures of one fluid (fluid A) within another fluid (fluid B),
fluid B (oil-phase) usually completely wets the walls of the micro-
channel while fluid A (water-phase) is non-wetting. In this study,
we also concentrate on the cases where only one fluid (fluid B)
wets the walls. The same idea in reference (Dupin et al., 2006) is
employed to realize the wetness effect.

4.2.1. Comparisons with experiments
Detailed comparisons were made between experiments and

simulations for the evolution of the droplet formation, the velocity
vectors, and the droplets size. In the simulations, the same values
of viscosities, interfacial tension and inlet velocities as those in
experiments were used. Therefore, same Capillary numbers were
obtained for simulations and experiments. The slight difference
in mass densities between the experimental solutions is neglected
in the simulations. Here qA = 1.0, qB = 0.0 in phase A and qA = 0.0,
qB = 1.0 in phase B are used for the initial conditions. Both fluids
are assumed to be incompressible, Newtonian and immiscible.



Table 2
Comparisons of droplet size obtained from experiment and simulation at various inlet
velocities (L(i) is the length of the droplet for experiment and L(ii) is for simulations)

uA (m/s) Length

L(i) experiments
(lm)

L(ii) simulations
(lm)

Relative error
jL(ii) � L(i)j/L(i) (%)

0.00042 275 270 1.82
0.000588 256 261 1.95
0.00084 225 235 4.44
0.00168 200 210 5.00
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The simulations are performed in a 301 � 61 � 11 cubic cell sys-
tem and each cell size corresponds to 10 lm. This cell system
was tested to be acceptable by comparing the results of a finer cell
system of 601 � 121 � 21(each cell size corresponds to 5 lm) in
several different flow conditions. The relative error between the re-
sults of two cell systems is not more than 5%. No-slip boundary
condition was applied for all the solid walls by the robust method
of mid-link bounceback (Succi, 2001), which conveniently resolves
the complex wall shapes and ensures the correct flux ratio by pre-
venting the boundary ‘‘leakage error” in small velocity cases. Inlet
and outlet fluxes and an outlet pressure (density) distribution were
specified at every time step using an appropriate equilibrium
f ð0Þi ðq;uÞ (Succi, 2001).

Fig. 14 shows a series of instantaneous states of droplet forma-
tion for (a) experimental results, (b) numerical results on x–y plane
and (c) numerical results of 3D profiles. The inlet velocity of water
(fluid A) is uA = 0.00084 and the velocity ratio is a = 1/3. The time
moment and corresponding time steps are given for each picture.
It can be found that the droplet shape and size in the simulation
agree well with the experimental results. Droplet formation pro-
ceeds in three stages, i.e. expansion (i)–(iv), necking (v) and figura-
tion (vi)–(vii). The final droplet size is a result of these three stages.
In the simulation, the droplet detaches a little earlier than that in
experiment (v) and a smaller droplet is obtained (vii). For both
experiment and simulation, the necking stage happened very fast
within about 2–3 ms. In this stage, the radius of the throat becomes
very small and a strong interfacial tension force ‘‘cuts” the fluid A
suddenly.

Fig. 15 shows the velocity fields obtained from (a) experiment
and (b) simulation when the droplet detaching. The inlet velocity
of water (fluid A) is uA = 0.00084 and the velocity ratio is a = 1/3.
Fluid A is split suddenly and a droplet is generated. Two symmetric
vortices appear on the back of the generated droplet and on the
front of to-be-dispersed phase. The simulated velocities agree with
the experimental results in general. However, the simulation re-
sults show larger velocities than experiment around the break po-
sition. This may be because the computed curvature changes
discontinuously in such a fast motion and leads to a strong varia-
tion of interfacial tension force.

Fig. 16 shows the snapshots of the droplet formation for exper-
iments (i) and simulations (ii) at various velocity ratios (a) a = 1/6,
(b) a = 1/3, (c) a = 1/2, (d) a = 1/1. Here, the inlet velocity
uB = 0.00252 is fixed. With the increase in the velocity ratio (uA in-
creases), the droplet size becomes large. At small velocity ratio,
fluid A breaks up easily and small droplets are obtained. It can be
found that the velocity ratio is also one of the important factors
(a) 0.00042Au =

(c) 0.00084Au =

(i)

(ii)

(i)

(ii)

Fig. 17. Experimental (i) and simulated (ii) dropl
to decide the size of generated droplets. The exact values of the
droplet size (the length of the droplet) for experiments and simu-
lations are listed in Table 1. For all the cases, the relative errors are
below 5% and good agreements are obtained. With the increase in
the velocity ratio, the relative error becomes large and the droplet
size is underestimated by our simulations.

Fig. 17 shows the snapshots of the droplet formation for exper-
iments (i) and simulations (ii) at various inlet velocities (a)
uA = 0.00042, (b) uA = 0.000588, (c) uA = 0.00084, (d) uA = 0.00168,
Here, the velocity ratio a = 1/6 is fixed. With the increase in the in-
let velocity, the obtained droplet size becomes small. The droplet
shape and size are very similar for simulations and experiments.
The exact values of the droplet size (the length of the droplet) for
experiments and simulations are listed in Table 2. With the in-
crease in the inlet velocity, the relative error becomes large and
the droplet size is overestimated by our simulations. However,
for all the cases, the relative errors are below 5%.

From the above comparisons between experiments and simula-
tions (Figs. 14–17), a good ability of our model in simulating such a
problem is proved.

4.2.2. Influence of capillary number on droplet size
Having validated the present model against experimental re-

sults, a series of simulations are performed at various interfacial
tensions r(0.001 � 0.24) for three different inlet velocities uA

(0.00084, 0.00168, 0.00336) at a = 1/3. The viscosities used here
for two fluids are lA = 0.01 and lB = 0.024, respectively. All above
parameters appear in the Capillary number.

Fig. 18 shows the plot of simulation results of relative droplet size
(the droplet length divided by the width of the main channel)
against the Capillary numbers which is defined as Ca = uAlA/r. The
corresponding values of parameters for each curve lines are given
in Table 3. It can be found that three curve lines almost overlap when
Ca < 0.005, although the Reynolds number are different for various
uA. This proves that the flow mode is decided by the Capillary num-
(b) 0.000588Au =

(d) 0.00168Au =

(i)

(ii)

(i)

(ii)

ets for different inlet velocities uA, at a = 1/6.
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Fig. 19. The profiles of simulated droplets for (a) Ca = 0.00014 and (b) Ca = 0.0084
at uA = 0.00336.

Table 3
The corresponding values of various parameters for Fig. 12
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ber at Ca < 0.005. When the Capillary number reaches a large value
(Ca > 0.005), three lines deviate from each other slightly and small
droplets are generated under large inlet velocities. However, it
seems that the flow is still decided by the Capillary number in gen-
eral under the current conditions. Furthermore, the size of the gen-
erated droplet decreases when the Capillary number increases. Two
samples of the profiles of simulated droplets are shown in Fig. 19.

Fig. 19 shows the profiles of simulated droplets for (a)
Ca = 0.00014 and (b) Ca = 0.0084 at uA = 0.00336. The phenomena
are quite different for two different Capillary numbers. At
Ca = 0.00014 (Fig. 19a), the droplet diameter is larger than the
width of the channel and slugs are generated. In this case, the
boundary conditions become important, especially the wetness
properties. For Ca = 0.0084 (Fig. 19b), the generated droplets be-
come small and are surrounded by the Fluid B. The influences of
the channel geometry and boundary condition become less since
the droplets do not touch the channel walls.
5. Conclusions

In the present work, an improved immiscible LBM model was
proposed and validated by static bubble flow and Taylor deforma-
tion. Three-dimensional simulations were carried out on the
immiscible two-phase flow in a cross-junction microchannel using
this model. Comparisons with experimental data were made in de-
tail. The influence of Capillary number on droplet formation was
studied. The following conclusions were drawn:

(1) The recoloring step of original immiscible model was
replaced by the anti-diffusion scheme. With the current
method, the side-effect was suppressed, the continuous
pressure distribution was obtained around the interface
and the thickness of interface was easily controlled.

(2) By combining CFS model and immiscible LBGK model, the
correct interfacial tension effect has been achieved. The
exact value of interfacial tension can be controlled easily.

(3) The present method has the advantages for decreasing the
spurious velocities and obtaining more reasonable pressure
distribution across the interface over the original immiscible
model.

(4) In the simulations of the droplet formation in the cross-junc-
tion microchannel, the flow pattern, droplet size and veloc-
ity vectors agree well with the experimental results.

(5) The flow patterns are mainly decided by the Capillary num-
ber in great extent under the current conditions.
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